Implementing Aruba Campus Switching Solutions tanfolyam - Időpontok és jelentkezés
Zártcsoportos képzésre jelentkezem
Jelentkezés
Boost your server design expertise and start building fast, scalable, and secure HPE infrastructures with confidence. This course shows you how to architect, deploy, and optimize modern ArubaOS-Switch–based networks—from redundancy and routing to security and QoS—so you can deliver robust enterprise environments end-to-end. Level up your technical capabilities and turn complex HPE server and switching technologies into practical, production-ready solutions.
This course is ideal for IT professionals who design, deploy, or manage HPE ArubaOS-Switch–based networks at scale. It fits consultants, network engineers, systems engineers, and solution architects who want to build resilient, secure, and high-performance enterprise switching and server infrastructures.
Knowledge and/or certification of Aruba Switching Fundamentals
HPE’s Aruba switching portfolio has become one of the most widely deployed enterprise networking platforms over the past decade, evolving from traditional edge switches into a robust, software-defined infrastructure used across campuses, data centers, and distributed environments. As organizations modernize their networks to support digital workplaces, mobility, IoT, and cloud connectivity, ArubaOS-Switches have gained a reputation for reliability, flexibility, and deep security integration—making them a preferred foundation for high-performance enterprise architectures.
This course gives you a practical, end-to-end understanding of how these technologies are designed and used in real production environments. You work with the full stack of modern switching capabilities—redundancy protocols, dynamic routing, multicast optimization, authentication, QoS, and advanced security—mirroring the challenges of large enterprise networks. The skills you build directly support everyday tasks such as designing scalable topologies, ensuring fast convergence, protecting infrastructure from attacks, enabling high-quality voice/video traffic, and integrating switches seamlessly with platforms like ClearPass and AirWave.
Aruba switching is used today in almost every sector—from finance and healthcare to manufacturing, retail, logistics, and education—wherever businesses need resilient, secure, and automated connectivity. Understanding how to design and operate these environments has become essential for IT professionals responsible for delivering stable, high-availability network services. This course equips you with the knowledge and capabilities needed to architect powerful HPE/Aruba-based solutions that meet modern enterprise requirements and prepares you for advanced switching certifications.

After you successfully complete this course, expect to be able to:
- Implement spanning tree protocol and loop protections
- Ensure redundancy for a network’s default gateway by configuring VRRP on Aruba switches
- Implement and manage an VSF fabric
- Deploy ArubaOS switches in single-area and multi-area OSPF systems
- Use Internet Group Management Protocol (IGMP) to optimize forwarding of multicasts within VLANs
- Implement PIM-DM to route multicast traffic
- Establish and monitor BGP sessions between your routers and ISP routers
- Define ACLs and identify the criteria by which ACLs select traffic
- Configure ACLs on ArubaOS switches to select given traffic
- Implement 802.1X on ArubaOS switch ports
- Configure captive portal authentication on ArubaOS switches to integrate them with an Aruba ClearPass solution
- Configure tunneled-node on ArubaOS switches
- Configure ArubaOS switches to select traffic, apply the appropriate QoS marking, and place the traffic in the proper priority queues
- Implement DHCP snooping and ARP protection to defend networks against DHCP exploits, ARP snooping, and ARP poisoning attacks
- Implement the proper port security measures for various use cases
- Implement connection rate filtering to provide a first layer of protection against viruses and worms

COURSE OUTLINE:
Introduction to Aruba Solutions
-
Describe market trends that are leading companies to implement a digital workplace
-
Describe how the Mobile First Network from Aruba, a Hewlett Packard Enterprise company, delivers the digital workplace
Data Link Layer Redundancy Technologies
-
Compare RPVST+ with RSTP and MSTP
-
Implement spanning tree protocol and loop protections
-
Describe how Unidirectional Link Detection (UDLD) and Device Link Detection Protocol (DLDP) detect and handle unidirectional links
Virtual Router Redundancy Protocol (VRRP)
-
Ensure redundancy for a network’s default gateway by configuring VRRP on Aruba switches
-
Ensure redundancy for a network’s default gateway by configuring VRRP on Aruba switches
-
Use best practices for implementing VRRP with MSTP
ArubaBackplane Stacking andAdvancedVirtual Switch Framework (VSF)
-
Describe the three topologies supported with backplane stacking and the roles members play in the stack
-
Explain how backplane stacking handles stack fragments
-
Implement and manage an VSF fabric
-
Describe what a split VSF stack is and configure the mechanisms designed to detect and remedy this problem
Advanced Open Shortest Path First (OSPF)
-
Deploy ArubaOS products in single-area and multi-area OSPF systems
-
Use area definitions and summaries to create efficient and scalable multiple area designs
-
Advertise routes to external networks in a variety of OSPF environments
-
Promote fast, effective convergence during a variety of failover situations
-
Use virtual links as required to establish non-direct connections to the backbone
-
Implement OSFP authentication
Internet Group Management Protocol (IGMP)
-
Use Internet Group Management Protocol (IGMP) to optimize forwarding of multicasts within VLANs
-
Describe the differences between IGMP and IGMP snooping
Protocol Independent, Multicast–Dense Mode (PIM-DM)
-
Distinguish between PIM-DM and PIM-SM
-
Implement PIM-DM to route multicast traffic
Border Gateway Protocol (BGP)
-
Establish and monitor BGP sessions between your routers and ISP routers
-
Advertise an IP block to multiple ISP routers
-
Configure a BGP router to advertise a default route in OSPF
Access Control Lists (ACL)
-
Define ACLs and identify the criteria by which ACLs select traffic
-
Configure ACLs on ArubaOS switches to select given traffic
-
Apply static ACLs to interfaces to meet the needs of a particular scenario
-
Examine an ACL configuration and determine the action taken on specific packets
802.1X Authentication
-
Implement 802.1X on ArubaOS switch ports
-
Integrate ArubaOS switches with an Aruba ClearPass solution, which might apply dynamic VLAN assignments, ACLs, QoS priorities, and rate limits
MAC Authentication
-
Implement RADIUS-based MAC Authentication (MAC-Auth) on ArubaOS switch ports
-
Implement local MAC Authentication (LMA) on ArubaOS switch ports
Captive Portal and Other Guest Options
-
Configure captive portal authentication on ArubaOS switches to integrate them with an Aruba ClearPass solution
-
Implement Web Authentication (Web-Auth) on Aruba switch ports
-
Combine multiple forms of authentication on a switch port that supports one or more simultaneous users
-
Use the Unauthenticated VLAN on ArubaOS switches to provide guest access
Integrating with an Aruba Mobility Solution
-
Configure tunneled-node on ArubaOS switches
-
Describe when and how to configure PAPI enhanced security, high availability, and fallback switching for tunneled-node
Secure Device Management
-
Set up RADIUS authentication and authorization for managers
-
Describe the differences between SNMPv2c and v3 and configure SNMPv3 settings on ArubaOS switches
-
Explain how technologies such as RMON, sFlow, and traffic mirroring allow you to monitor network traffic
-
Explain best practices for managing configurations and monitoring network traffic using a solution such as Aruba AirWave
Quality of Service
-
Describe how ArubaOS switches prioritize traffic based on its queue
-
Configure ArubaOS switches to honor the appropriate QoS marks applied by other devices
-
Configure ArubaOS switches to select traffic, apply the appropriate QoS marking, and place the traffic in the proper priority queues
-
Implement rate limiting
-
Configure a voice VLAN and LLDP-MED
Additional Security Features
-
Implement DHCP snooping and ARP protection to defend networks against DHCP exploits, ARP snooping, and ARP poisoning attacks
-
Implement the proper port security measures for various use cases
-
Explain how MAC lockdown differs from port security and use the proper solution for each use case
-
Implement connection rate filtering to provide a first layer of protection against viruses and worms
Kérdésed van a tréninggel kapcsolatban?
Ezek a tanfolyamok és e-learningek is érdekelhetnek
Tekintsd meg néhány további képzésünket a témában
Designing Cisco Data Center Infrastructure e-learning
Managing SAN Infrastructure with Cisco Data Center Network Manager e-learning
Az előadás teljessége nagyon tetszett és inspiráló volt. Az oktató felkészültsége szakmai hozzáértése nagyon tetszett.
ISTQB Foundation Level - Agile Tester Extension tanfolyam résztvevője